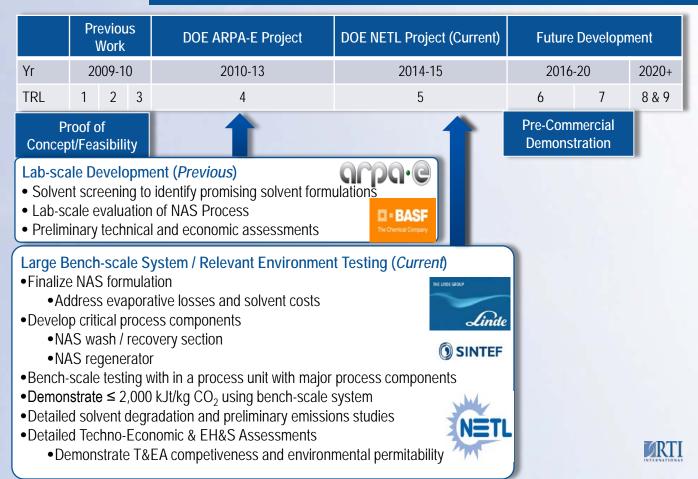
Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO₂ Capture Process for Coal-Fired Power Plants (DE-FE0013865)

Jak Tanthana, Mustapaha Soukri, Paul Mobley, Aravind Rabindran, Thomas Gohndrone, Tom Nelson, Markus Lesemann, James Zhou, and Marty Lail

Devin Bostick, Stevan Jovanovic, and Krish Krishnamurthy

Andreas Grimstvedt, Solrun Johanne Vevelstad



Steve Mascaro

RTI International is a trade name of Research Triangle Institute.

Non-Aqueous Solvent (NAS) Development Pathway

R&D Strategic Approach

Breakdown of the Thermal Regeneration Energy Load $\mathbf{q}_{\mathrm{R}} = \left[\frac{\mathbf{C}_{\mathrm{P}}(\mathbf{T}_{\mathrm{R}} - \mathbf{T}_{\mathrm{F}})}{\Delta \alpha} \cdot \frac{\mathbf{M}_{\mathrm{sol}}}{\mathbf{M}_{\mathrm{CO}_{2}}} \cdot \frac{\mathbf{1}}{\mathbf{x}_{\mathrm{sol}}}\right] + \left[\Delta \mathbf{H}_{\mathrm{V},\mathrm{H}_{2}\mathrm{O}} \cdot \frac{\mathbf{p}_{\mathrm{H}_{2}\mathrm{O}}}{\mathbf{p}_{\mathrm{CO}_{2}}} \cdot \frac{\mathbf{1}}{\mathbf{M}_{\mathrm{CO}_{2}}}\right] + \left[\frac{\Delta \mathbf{H}_{\mathrm{abs},\mathrm{CO}_{2}}}{\mathbf{M}_{\mathrm{CO}_{2}}}\right]$ Reboiler Sensible Heat Heat of Heat of Heat Vaporization Absorption Duty Δα **Reboiler Duty** X_{solv} [mol CO₂/ C_p [J/g K] Δh_{abs} ∆h_{vap} Solvent [mol solv./ [GJ/tonne [kJ/mol] [kJ/mol] mol mol sol'n] CO_2] solv.] MEA (30%) 3.8 85 40 0.11 0.34 3.22 Lower Energy Solvent System NAS 1.3 65 0.3 0.3 1.71 1

For NAS, heat of vaporization of water becomes a negligible term to the heat duty Process capable of achieving these criteria will have a lower energy penalty than SOTA processes

Path to Reducing ICOE and Cost of CO₂ Avoided

- Primarily focus on reducing energy consumption reboiler duty
- Reduce capital expenditure
 - Simplify process arrangement
 - Materials of construction
- Limit operating cost increase

Rochelle, G. T. Amine Scrubbing for CO₂ Capture. *Science* **2009**, 325, 1652-1654.

Project Objectives and Technical Challenges

Objective: Continue the advancement of the NAS CO₂ Capture Process

- Address specific challenges facing technical and economic potential
- Bench-scale demonstration of the potential to reduce the energy penalty to <2,000 kJ_t/kg of CO₂ captured

Specific Challenges

- Minimize solvent losses and make-up
- Solvent degradation and emission studies
- Develop and evaluate process modifications
- Bench-scale evaluation of the NAS CO₂ capture process

Timeframe: 10/1/13 to 03/30/15 (BP1, 18 months) 04/1/15 to 06/30/16 (BP2, 15 months) Cost: \$1.51 M BP1, \$1.55 M BP2

RTI NAS Solvent

Brief Recap of BP1 Achievements

BP1 Achievements	Select Points	
Incorporated non-volatile hydrophobic diluent with suitable properties	 Vapor pressure <0.13 kPa, 25°C Low cost Low viscosity (~2 cP) 	
Formulated diluent with hydrophobic amines	 Low heats of absorption No precipitates Low viscosities (25-30 cP rich) Reasonable CO₂ capacity Cost is <\$50/kg 	
Demonstrated emissions of NAS below 10 ppm	 Designed wash section at lab scale ~20 ppm emitted without wash section 	
Performed long-term evaluation of NAS at lab scale with simulated flue gas containing 13.3% CO_2 , 7.5% H_2O , 2% O_2 , 50 ppm SO_2 , and balance N_2	 Capture efficiency (~90%) Long-term, stable operation demonstrated (~100 hrs) 	
Completed long-term thermal and oxidative degradation studies at SINTEF	 Five week evaluations Single components of diluent are thermally stable Carbamate polymerization products not formed Corrosion results promising (Fe, Ni, Cr) Eliminated one NAS amine due to severe oxidative degradation 	

BP2 Focus: Bench-scale Testing of Refined Solvents

Absorber 3" Sch. 10 SS316 (8.5 m height) Mellapak 350X

Temp: 30-55°C Pressure: Up to 200 kPa

Gas Vel: 0.33-1.5 m/s L: 15-75 kg/h

Regenerator 3" Sch. 10 SS316 (7.1 m height) Mellapak 350x

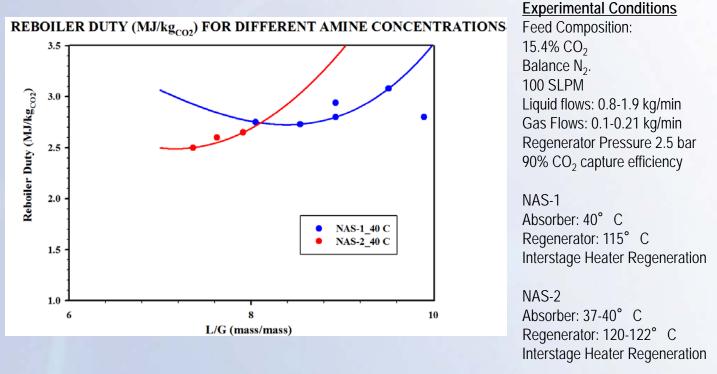
Temp :Up to 150°C

Pressure: Up to 1MPa

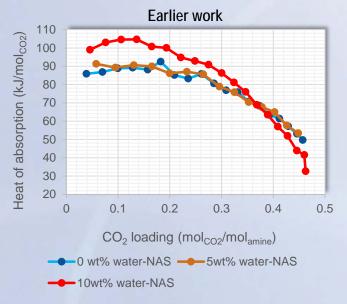
75 Liter Solvent

Simulated Flue Gas Properties		
FG Flow Rate:	100 to 485 SLPM	
CO ₂ Feed Rate:	1.8 to 8.6 kg/h	
Feed Temp.:	30 to 50°C	
Target Comp:	CO ₂ : 13.3%; H ₂ O: 6.1%; O ₂ : 2.35%; N ₂ : bal.	
CO ₂ Content:	up to 20 %vol	
Water Content:	~0 to 12.3%vol	

Energy Technology Division



Baseline testing with aqueous MEA


Energy Technology Division

Bench Scale Test Unit Results with Dry Flue Gas

- Working capacities were lower than anticipated, ~0.15-0.21 moles CO₂/ mole amine for NAS-1
- Improved slightly for NAS-2 due to slightly lower absorber temperature and higher regenerator temperature
- Still higher than expected based on theoretical values and not a major improvement over other technologies
- Early in our experience at operating the NAS system

Impact of Water

- Observed impact on enthalpy of reaction in earlier NAS formulation
- Measurements at 40° C
- Concentration of water at 10% raised heat of absorption substantially
- Concerns about this impact on reboiler heat duty

0.3

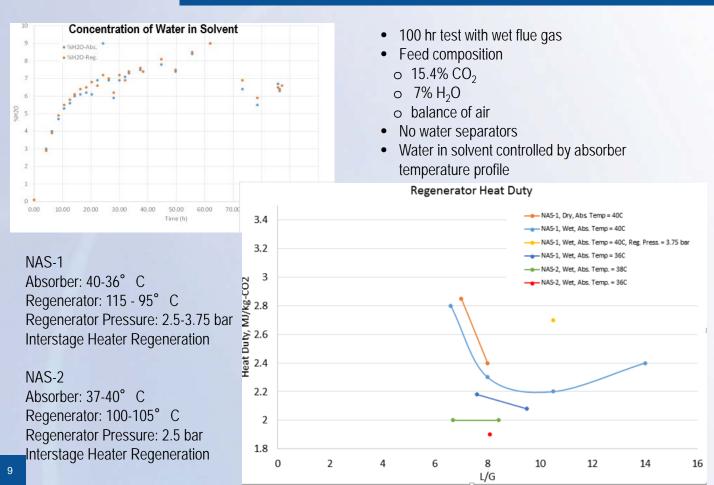
0.4

0.5

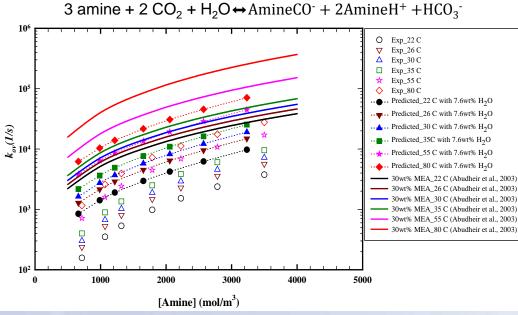
0.6

 Measured heat of absorption of dry NAS-2 vs. "wet" NAS-2 at 120° C

0.2


0.0

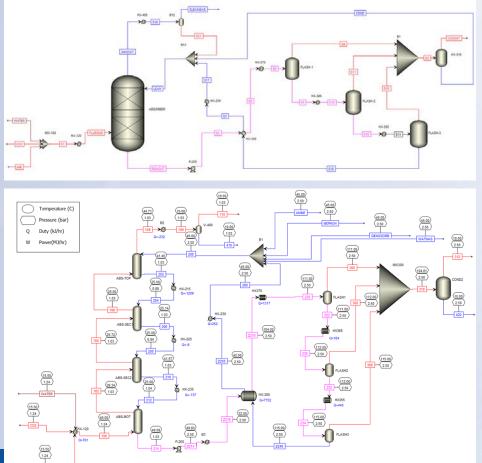
0.1


- Observed increase in heat of absorption when NAS was saturated with water at 120° C
- Expect reboiler duty would go up due to higher ∆h_{abs}
- Impact on the process is that [water] may need to be kept low. Water becomes separate phase > ~9 wt%
- Increasing the hydrophobicity of the solvent chemistry was thought to be one way to handle

Heat of absorption of CO₂ in NASs

Bench Scale Test Unit Results with Wet Flue Gas

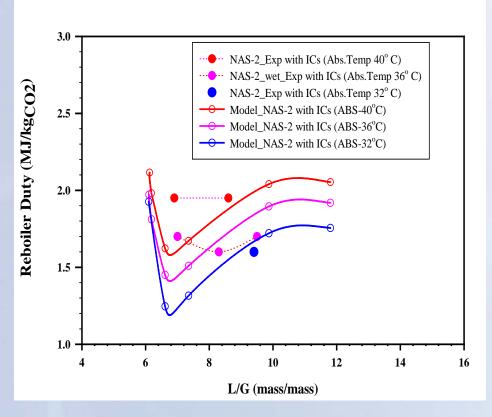
Reaction Kinetics



- CPA-102 Calorimeter
- Stirred cell reactor
- Falling pressure drop method
- 260 mL reactor volume
- 22.6 cm² interfacial area
- T=298-353K
- P_{CO2}= 4.48-6.29 kPa
- 100 mL solvent volume
- Kierzkowska-Pawlak et al., 2014, Int. J. Greenhouse Gas Control., 24, 106-114

- In the absence of water kinetics are substantially slower than MEA
- With water, kinetics are approximately 2 times slower than MEA
- Ramifications
 - o NAS requires higher absorber column to capture 90% CO₂ than 30wt% MEA
 - o Process modelling of NAS showed a need for intercoolers to attain equilibrium
 - o Use promoter to improve kinetics

Process Modeling


Developed rate-based process model Aspen ENRTL-SR Thermodynamic and physical properties acquired experimentally:

- Henry's constant for CO₂
- Liquid heat capacity
- Vapor pressures
- Reference state properties
- Heat of vaporization
- Dissociation constants
- VLE
- Density
- Δh_{abs}
- Viscosity
- Surface tension
- Thermal conductivity
- Dielectric constant
- Diffusivity of CO₂

Used process model to direct benchscale testing after initial runs

Impact of Intercooler Temperatures on Reboiler Duty

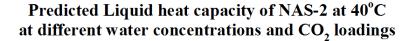
- Impact of temperature on absorber bottom
- Modeled 40-32° C
- Lower temperature
- Lower L/G
- Lower reboiler duty
- Guided BsTU experiments at lower absorber temperatures
- Observed lower reboiler duties
 experimentally
- Will continue to investigate moving forward

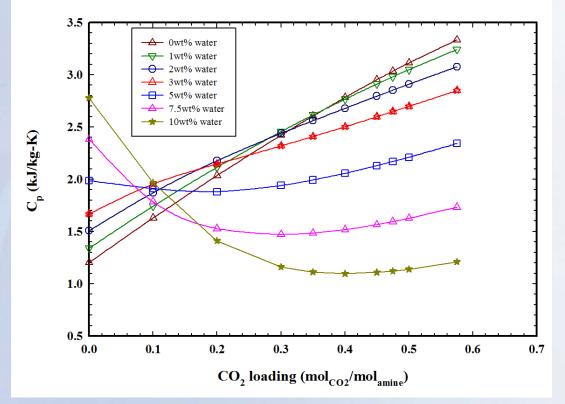
Conditions for Experimental Data NAS-2

- Absorber: 37-40° C
- Regenerator: 87-98° C
- Pressure: 2.5 bar
- Interstage Heater Regeneration

Techno-Economic Analysis

	Case 11_2011	Case 12_2011	NAS2-2.5 bar	NAS2-3.6 bar	NAS3-3.6 bar	
	No Capture	w/ MEA				
Power Performance						
Net Plant HHV Efficiency (%)	39.3%	28.4%	31.10%	32.00%	32.90%	
Capital Investment (Total Installed Costs) 1000 \$						
Total Plant Cost (\$/kW)	2,451	4,391	3,956	3,826	3,674	
Operating and Maintenance Costs						
Annual (\$/y)	104,594,992	144,512,589	131,245,575	129,556,370	125,614,892	
	COE Determination					
Total (\$/MWh)	80.94	147.33	137.41	134.05	130.76	
<i>ICOE</i> (%)	0%	82%	70%	66%	62%	
	CO	2 Capture Summa	ıry			
CO ₂ Captured (tonne/MWh)		1.00	0.94	0.89	0.85	
CO ₂ Avoided (tonne/MWh)		0.69	0.71	0.70	0.70	
CO ₂ Capture Cost (\$/tonne)		66.7	59.8	59.9	58.7	
CO ₂ Capture Cost excl. TS&M (\$/tonne)		56.55	49.23	48.64	46.97	
CO ₂ Avoided Cost (\$/tonne)		96.0	80.0	74.1	73.0	




Summary of BP2 Testing

- With Linde, performed testing of NAS solvents in bench-scale test unit at 75-150 liter solvent scale using simulated flue gas
- Under dry conditions, measured reboiler heat duties as low as 2.4 GJ/tonCO₂ but did not realize duties as low as anticipated
- Under wet conditions, measured reboiler heat duties 1.6-1.9 GJ/tonCO₂ under conditions with regenerator operating at temperature less than 100° C
- Measured kinetics of CO₂ absorption and observed the rate constants of the wet solvent to be approximately 2 times slower than 30% aqueous MEA, with the kinetics of the dry solvent being substantially slower
- Developed rate-based ASPEN process model that matches well with experiment and used it to direct experiments
- Performed techno-economic analysis which shows potential of NAS process for lowering cost of CO₂ capture to ~\$47/ tonCO₂ (excluding TS&M costs)
- Completed long-term (five week) degradation testing at SINTEF on simulated flue gas showing that NAS
 is stable relative to aqueous MEA and is less corrosive

Impact of water on NAS

State-Point Data Table for NAS-1

	Units	Measured Performance	Projected Performance
Pure Solvent	Onto		
Molecular Weight	g mol ⁻¹	139.17ª 153.6 ^b	< 250
Normal Boiling Point	°C	243 to 288.45	181 to 200
Normal Freezing Point	°C	52.5 to -24	52.5 to -24
Vapor Pressure @ 15°C	Bar	0.00001 to 0.003 ^c	< 0.005 ^b
Working Solution			
Concentration	kg/kg	0.316 ^d	0.4 to 0.6
Specific Gravity (15°C)	kg/L	1.066 to 1.1°	0.9 to 1.2
Specific Heat Capacity @ STP	kJ/kg K	1.28 to 1.48 ^d	1.2 to 1.5
Viscosity @ STP	cP	26.2 ^d	< 40
Surface Tension @ STP	dyn/cm	36.6 to 38.7°	< 40
Absorption			
Pressure	bar CO ₂	0.133	0.133
Temperature	°C	35 to 45 (40)	35 to 45
Equilibrium Loading	g molCO ₂ /kg	0.85 to 1.59° (1.06)	0.85 to 1.59
Heat of Absorption	kJ/kg CO ₂	1,590 to 1,931 ^d	1,590 to 1,931
Solution Viscosity	cP	26.2	2 to 30
Desorption			
Pressure	bar CO ₂	2 to 7.8 (2.0)	2 to 7.8
Temperature	°C	90 to120 (90)	90 to 120
Equilibrium Loading	g molCO ₂ /kg	0.02 to 0.4 ^c (0.2)	0.02 to 0.4
Heat of Desorption	kJ/kg CO ₂	1,250 to 1,591° (1,591)	1,250 to 1,591

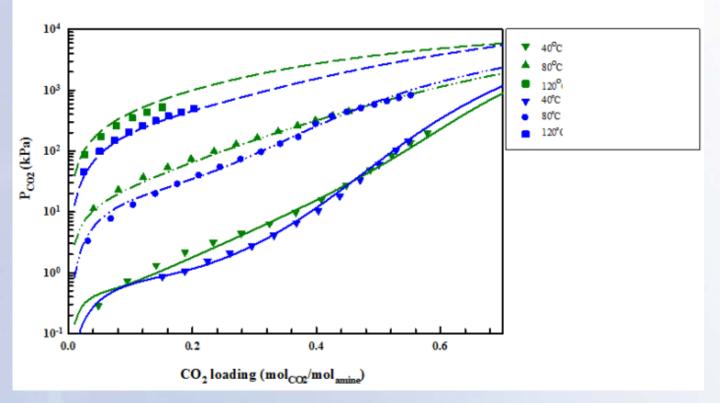
^a Nitrogenous Base Component

^b NAS Formulation

Individual components, range lowest to highest
 ^d Ranges based on exp. measurements for most promising NASs
 Italicized numbers used in preliminary technical and economic assessment.

Properties of NAS Solvent

Criteria	Target	NAS-2
Vapor Pressure [kPa] @ 40°C	< 1	0.3 (Estimated)
Water Content [wt%]	<10	7.26
Viscosity [cP] CO ₂ -rich at 40°C	< 40	< 30
Foaming Tendency	Low	Low
Cost [\$/kg]	< 50	comparable
Health Rating	≤ 3 (≤MEA)	2
Min. thermal regeneration energy* [kJt/kg CO ₂]	<2,000	2,000


*Notz et al. A short-cut method for assessing absorbents for postcombustion carbon dioxide capture. *Int. J. Greenhouse Gas Control* **2011**, 5, 3 413-421

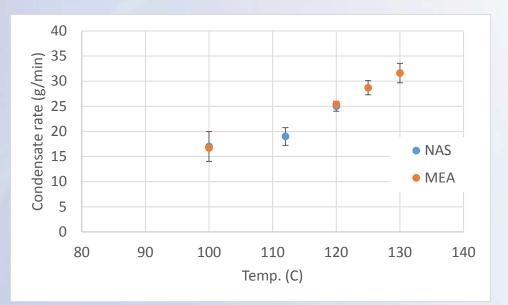
RTI International

Energy Technology Division

Updated VLE Curves from ENRTL-SR

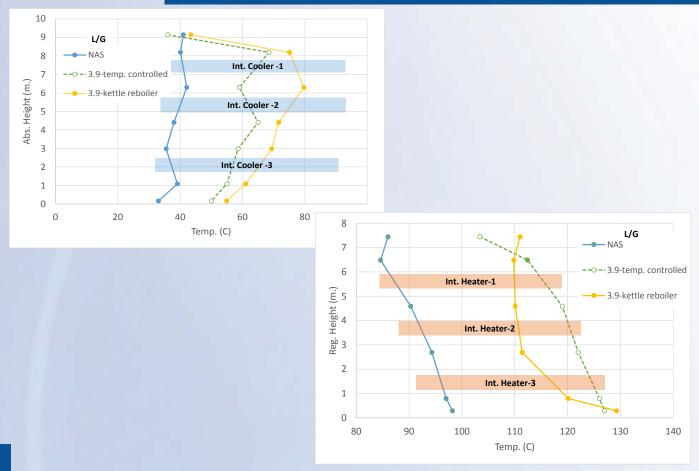
Lab-Scale Gas Absorption System

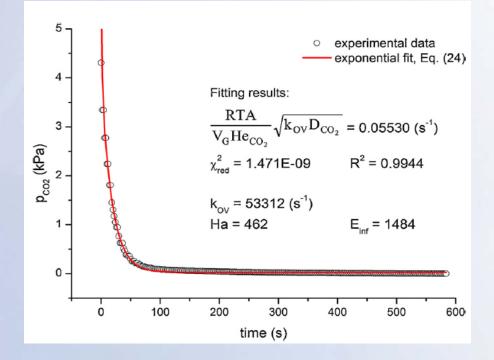
Description


- Simple gas scrubbing system suitable for evaluation of aq. and nonaq. solvents
- = 2-10 SLPM of sim. flue gas with relevant blends of CO₂, H₂O, O₂, SO₂, N₂
- Liquid flowrates of 10 to 130 mL/min
- Operates continuously; > 50 days (1,000h) commissioning with MEA-Water
- Total solvent volume: ~400 mL
- Off-line solvent compositional analysis
- On-line gas analysis

Scope of Testing

- Demonstrate stability of non-aq. solvents in a representative process arrangement using high-fidelity sim. FG
- Evaluate/demonstrate key process concepts specific to non-aqueous solvent process
- Compare performance of the NAS process and 30 wt% MEA-H₂O
 - Estimate regen. energy [kJ_t/kg CO₂]
 - Support design of large, bench-scale unit


Heat Loss Measurement BsTU


The heat loss determination using MEA/H₂O solution was performed in similar manner as that of NAS where the regenerator was maintained at a uniform temperature of 100, 120, 125, and 130 °C while the lean MEA solution was circulating throughout the system. The heat loss measurement was evaluated for NAS at 100, 112, and 120 °C. The condensate collection during the heat loss determination at different temperature from both NAS and MEA solutions are provided in the figure.

Temperature Profiles of the Absorber and Regenerator

Kinetics Experiment

